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nil-Temperley-Lieb (nTL) Algebras

1 2 3

Algebra based on a graph G . One generator per vertex:
x1, x2, x3.

x2i = 0.

For two adjacent vertices i and j , xixjxi = xjxixj = 0.

For two nonadjacent vertices i and j , xixj = xjxi .

A monomial that does not equal 0 is called irreducible.

Example
x3x1x2x3 = x1x3x2x3 = 0 is reducible.
x2x1x3x2 = x2x3x1x2 is irreducible.
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Dimension of the Algebra

The dimension of the algebra is the number of distinct irreducible
monomials.

G1:

1

2 3
G2:

1

2 3

4 5

In G1, these monomials are
1, x1, x2, x3, x1x2, x1x3, x2x3, x3x2, x1x2x3, x1x3x2

and the dimension is 10. Not counted are repeated monomials

(x2x1 = x1x2 and x3x1 = x1x3) and reducible monomials
(x2x3x2 = 0 and x3x2x3 = 0).

In G2, there is an infinite irreducible monomial:
x1x2x3x1x4x5x1x2x3x1x4x5 . . .

= x1x3x2x1x5x4x1x3x2x1x5x4 . . .
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Dimension of the Algebra

Theorem

The nTL algebra on G is finite iff G is a Dynkin diagram.



nil-Temperley-Lieb Algebras on the Path Graph

1 2 3 n − 1 n

Number the vertices 1 to n.

Dimension of the algebra known to be Cn+1, the n + 1th

Catalan number.

Each monomial can be uniquely written as a series of
decreasing runs, with increasing peaks and valleys.
(x3x2x1) (x5x4x3x2) (x7x6)

This is the lexicographically smallest representation of the
monomial.

If peaks don’t increase:
x4x3x2x1x4x3 = x4x3x2x4x1x3 = x4x3x4x2x1x3 = 0
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Motivation

Map to the set of permutations on n + 1 elements: if xi is
taken to the transposition of the i th and i + 1th elements.

By this construction, the elements of the algebra are
321-avoiding permutations.

Definitions similar to those of Coxeter groups. The elements
of the algebra correspond to elements of Coxeter groups
satisfying certain properties.
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Partially Directed nTL Algebras

1 2 3 4 5

Based on a graph G with some directed and some undirected
edges.

x2i = 0.

For two nonadjacent vertices i and j , xixj = xjxi .

For two vertices i and j connected by an undirected edge,
xixjxi = xjxixj = 0.

For two vertices i and j with a directed edge from i to j,
xixjxi = 0.

The example has relations x2x3x2 = 0 and x5x4x5 = 0, but not
x3x2x3 = 0 or x4x5x4 = 0.
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Dimensions of Partially Directed nTL algebras

Theorem

The nTL algebra on a partially directed graph G is finite iff G is a
path graph with all directed edges going in the same direction.



Maximally Directed nTL Algebras

1 2 3 n − 1 n

Each monomial can be written uniquely as a series of decreasing
runs with increasing valleys. For example,

(x5x4x3x2x1) (x7x6x5x4x3) (x6x5x4) (x7) .

There are n + 1 choices for the run with valley x1:
1, x1, x2x1, . . . , xnxn−1 . . . x2x1.

Similarly, there are n choices for the run with valley x2, n − 1
choices for the run with valley x3, and so on.
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Maximally Directed nTL Algebras

Theorem

There are (n + 1) × n × (n − 1) × . . .× 2 = (n + 1)! elements in
the maximally directed algebra.

Mapping the generator xi to the transposition of i and i + 1 in the
set of permutations on n + 1 elements, each irreducible monomial
corresponds to a different element of the set of permutations on
n + 1 elements.



Maximally Directed nTL Algebras

Theorem

There are (n + 1) × n × (n − 1) × . . .× 2 = (n + 1)! elements in
the maximally directed algebra.

Mapping the generator xi to the transposition of i and i + 1 in the
set of permutations on n + 1 elements, each irreducible monomial
corresponds to a different element of the set of permutations on
n + 1 elements.



Peaks and Valleys

Every decreasing run has a peak and valley: x5x4x3x2x1.

Every partially directed nTL algebra is a subalgebra of the
maximally directed nTL algebra. Thus,

Theorem

The monomials of a partially directed nTL algebra are sequences of
decreasing runs with increasing valleys.
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Conditions on the Peaks

Theorem

If there is an undirected edge from i to i + 1 and there are two
peaks with (from left to right) p1 ≥ i + 1 and p2 = i + 1, there
must be a peak of i between p1 and p2.

1 2 3 4 5

For example, when there is an undirected edge between 3 and 4
(i = 3), x5x4x3x2x1x3x2x4 is irreducible, but x5x4x3x2x1x2x4 is not.

This theorem completely describes the irreducible monomials in the
partially directed nTL algebras.



Conditions on the Peaks

Theorem

If there is an undirected edge from i to i + 1 and there are two
peaks with (from left to right) p1 ≥ i + 1 and p2 = i + 1, there
must be a peak of i between p1 and p2.

1 2 3 4 5

For example, when there is an undirected edge between 3 and 4
(i = 3), x5x4x3x2x1x3x2x4 is irreducible, but x5x4x3x2x1x2x4 is not.

This theorem completely describes the irreducible monomials in the
partially directed nTL algebras.



Conditions on the Peaks

Corollary

There is no condition on the peaks of the maximally directed
algebra.

Corollary

In the nTL algebra, peaks must be increasing.

Corollary

1 2 3 k − 1 k k + 1 n − 1 n

In the algebra based on the “undirected-directed” graph shown,
peaks must strictly increase or remain higher than k.
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Special Cases

1 2 3 n − 1 n

Dimension: Cn + Cn+1 − 1, where Cn is the nth Catalan number.

1 2 n − 2 n − 1 n

Dimension:
(2n
n

)
= (n + 1)Cn
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Future research

Find a general formula to calculate the dimension of any
partially directed nTL algebra.

Further study which permutations are represented by a
partially directed nTL algebra.

A directed edge between i and j means changing the relation
xixjxi = xjxixj = 0 to xixjxi = 0. What if we changed it to
xixjxi = xjxixj?
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